F(x) = x^2+cosx+1.
To find
the integrand f(x).
Since the integrand is
f(x),
F(x) = integral f(x)
dx
Threfore Integral f(x) =
F(x),
Integral f(x) dx =
x^2+cosx+1.
Differentiating both sides, we
get:
f(x) = d/dx
{x^2+cosx+1}
f(x) = d/dx (x^2) + d/dx(cosx) +d/dx
(1)
f(x) = 2x -sinx +0 , as d/dx(x^n) = nx^(n-1) ,
d/dx(cosx) = -sinx.
f(x) = 2x-sinx.
No comments:
Post a Comment