To solve i/(1-i) +i/(1+i).
i
is the sqrt (-1). So i^2 = -1.
To simplify the expression,
we multiply both numerator and denominator by the same expression and also we convert
the denominator into a real number.
The first
term:
i/(1-i) =
i(1+i)/(1-i)(1+i)
i/(1-i) =
(i+i^2)/(1-i^2)
i/(1-i) =
(i-1)/1+1)
i/(1-i) =
(i-1)/2.......................(1).
The second
term:
i/(1+i) =
i(1-i)/(1+i)(1-i)
i/(1+i) =
(i-i^2)/(1-i^2)
i/(1+i) =
(i-1)/(1+1)
i/(1+i) =
(i+1)/2......................(2).
Adding (1) and (2) , we
get:
i/(1-i) + i/(1+i) =
(i-1+i+1)/2
i/(1-i) + i/(1+i) =
2i/2
i/(1-i) +i/(1+i) = i
No comments:
Post a Comment