b) [(sin^3 (x) + sin 3x) / sin x] + [(cos^3 (x) - cos 3x)
/cos x] = 3
We'll write the formula for sin
3x:
sin 3x = sin (2x+x) = sin 2x*cos x + sin x*cos
2x
sin 2x = 2sin x*cos x
cos
2x = 1 - 2(sin x)^2
We'll substitute sin 2x and cos 2x into
the formula of sin 3x:
sin 3x = 2 sinx*(cos x)^2 + sin
x*[1-2(sin x)^2]
We'll substitute (cos x)^2 = 1 - (sin x)^2
(fundamental formula of trigonometry)
sin 3x = 2sin x*[1 -
(sin x)^2] + sin x - 2(sin x)^3
We'll remove the
brackets:
sin 3x = 2sin x - 2(sin x)^3 + sin x - 2(sin
x)^3
We'll combine like
terms:
sin 3x = 3sin x - 4(sin
x)^3
We'll calculate the numerator of the first
ratio:
(sin x)^3 + sin 3x = (sin x)^3 + 3sin x - 4(sin
x)^3
We'll combine like
terms:
(sin x)^3 + sin 3x = 3sin x - 3(sin
x)^3
We'll factorize by 3 sin
x:
3sin x - 3(sin x)^3 = 3 sin x[1 - (sin
x)^2]
But 1 - (sin x)^2 = (cos
x)^2
3 sin x[1 - (sin x)^2] = 3 sin x (cos
x)^2
The first ratio will
become:
[(sin^3 (x) + sin 3x) / sin x] = 3 sin x (cos
x)^2/sin x
We'll
simplify:
3 sin x (cos x)^2/sin x = 3 (cos
x)^2
Now we'll calculate the
second ratio:
[(cos x)^3 - cos 3x) /cos
x]
First, we'll calculate the formula for cos
3x:
cos 3x = cos (2x + x) = cos 2x*cos x - sin 2x*sin
x
cos 3x = 4 (cos x)^3 - 3 cos
x
We'll substitute cos 3x to the
numerator:
(cos x)^3 - cos 3x = (cos x)^3 - 4 (cos x)^3 + 3
cos x
(cos x)^3 - cos 3x = -3 (cos x)^3 + 3 cos
x
We'll factorize by -3 cos
x
-3 (cos x)^3 - 3 cos x = 3 cos x[1 - (cos
x)^2]
But 1 - (cos x)^2 = (sin
x)^2
3 cos x[1 - (cos x)^2] = 3 cos x (sin
x)^2
The second ratio will
become:
[(cos x)^3 - cos 3x) /cos x] = 3 cos x (sin
x)^2/cos x
We'll
simplify:
3 cos x (sin x)^2/cos x = 3 (sin
x)^2
The final expression will
be:
[(sin x)^3+ sin 3x) / sin x] + [(cos x)^3 - cos 3x)
/cos x] = 3 (cos x)^2 + 3 (sin x)^2
We'll factorize by
3:
3 (cos x)^2 + 3 (sin x)^2 = 3[(cos x)^2 + (sin
x)^2]
But (cos x)^2 + (sin x)^2 =
1
3[(cos x)^2 + (sin x)^2] =
3
[(sin x)^3+ sin 3x) / sin x] + [(cos x)^3 -
cos 3x) /cos x] =
3
a)
Now we'll prove the identity:
(cos 3A) / 2
cos 2A - 1) = cos A
We'll take the formula for cos 3A from
the previous point b):
cos 3A = 4 (cos A)^3 - 3 cos
A
cos 2A = 2 (cos A)^2 -
1
So, the difference 2 cos 2A - 1 = 2 (cos A)^2 - 1 -
1
2 (cos A)^2 - 1 - 1 = 2 (cos A)^2 -
2
We'll factorize by 2:
2 (cos
A)^2 - 2 = 2[(cos A)^2 - 1]
But (cos A)^2 - 1 = (sin
A)^2
2[(cos A)^2 - 1] = 2(sin A)^2
No comments:
Post a Comment