cos a = (x^2 + 1)/2x
let
usdetermine cos 3a:
We know
that:
Let us rewrite cos 3a
:
cos 3a = cos (2a + a)
But we
know that :
cos(a+b) = cosa*cosb -
sina*sinb
==> cos(2a + a) = cos2a*cosa -
sin2a*sina
Now we know that
:
cos2a = cos^2 a - sin^2
a
sin2a = 2sina*cosa
=>
cos(2a+a) = (cos^2 a - sin^2 a)*cosa - 2cosa*sin^2
a
= cos^3 a - cosa*sin^2 a -
2cosa*sin^2 a
= cos^3 a -
3cosa*sin^2 a
But sin^2 a = 1-cos^2
a
==> cos(2a+a) = cos^3 a - 3cosa(1-cos^2
a)
= cos^3 a - 3cosa + 3cos^3
a
= 4cos^3 a - 3cos
a
Now substitute with cosa = (x^2 +
1)/2x
==> cos 3a = 4[ (x^2 + 1)/2x]^3 - 3 (x^2 +
1)/2x
= (x^2 + 1)^3/ 2x^3 - 3(x^2
+1)/2x
= [(x^2 + 1)^3 - 3x^2(x^2
+1)]/2x^3
= (x^2 + 1)*[ (x^2 + 1)^2 -
3x^2]/2x^3
= (x^2 +1)*( x^4 + 2x^2 + 1
- 3x^2)/2x^3
= (x^2 + 1) *(x^4 - x^2 +
1) /2x^3
= (x^6 - x^4 + x^2 + x^4 -
x^2 +1)/2x^3
= (x^6
+1)/2x^3
==> cos3a = (x^6 +
1)/2x^3
No comments:
Post a Comment