Monday, May 4, 2015

sin240+sin120+sin150+sin210=?

To determine the value of the sum, we'll apply the formula
that transforms the sum of sine functions into a
product:


sin a + sin b = 2
sin[(a+b)/2]*cos[(a-b)/2]


We'll combine the first and
the second term:


sin 120 + sin 240 = 2
sin[(120+240)/2]*cos[(120-240)/2]


sin 120 + sin 240 = 2
sin[(360)/2]*cos[(-120)/2]


sin 120 + sin 240= 2 sin 180*cos
(-60)


But sin 180 = 0,
so:


sin 120 + sin 240 =
0


We'll combine the third and the last
term:


sin150+sin210 = 2
sin[(150+210)/2]*cos[(150-210)/2]


sin150+sin210 = 2 sin
(360/2) *cos (-60/2)


sin150+sin210 = 2 sin 180*cos
(-30)


But cos(-30) = cos 30,because the function cosine is
an even function.


sin150+sin210 = 2*0*cos
30


sin150+sin210 = 0


So, the
value of the sum
is:


sin240+sin120+sin150+sin210 = 0+0 =
0

No comments:

Post a Comment

Comment on the setting and character of "The Fall of the House of Usher."How does setting act as a character?

Excellent observation, as it identifies how the settings of Poe's stories reflect the characters of their protagonists. Whet...