To determine the value of the sum, we'll apply the formula
that transforms the sum of sine functions into a
product:
sin a + sin b = 2
sin[(a+b)/2]*cos[(a-b)/2]
We'll combine the first and
the second term:
sin 120 + sin 240 = 2
sin[(120+240)/2]*cos[(120-240)/2]
sin 120 + sin 240 = 2
sin[(360)/2]*cos[(-120)/2]
sin 120 + sin 240= 2 sin 180*cos
(-60)
But sin 180 = 0,
so:
sin 120 + sin 240 =
0
We'll combine the third and the last
term:
sin150+sin210 = 2
sin[(150+210)/2]*cos[(150-210)/2]
sin150+sin210 = 2 sin
(360/2) *cos (-60/2)
sin150+sin210 = 2 sin 180*cos
(-30)
But cos(-30) = cos 30,because the function cosine is
an even function.
sin150+sin210 = 2*0*cos
30
sin150+sin210 = 0
So, the
value of the sum
is:
sin240+sin120+sin150+sin210 = 0+0 =
0
No comments:
Post a Comment