We have to solve
(6/xy-2/y^2)/(1/x+4/y)
Now
(6/xy-2/y^2)/(1/x+4/y)
making the denominator of all the
terms in the numerator the same
=> (6*y/xy^2 -
2x/xy^2)/ (1/x + 4/y)
do the same for the terms in the
denominator
=> [(6y - 2x)/xy^2] / (y/xy +
4x/xy)
=> [(6y - 2x)/xy^2] /
[(y+4x)/xy]
=> [(6y - 2x)*xy] /
xy^2*(y+4x)
cancelling the common
terms
=>[(6y - 2x)] /
y*(y+4x)
=> (6y-2x) /
y*(y+4x)
=> 2(3y - x) / y
(y+4x)
The required form is : [2*(3y - x)] /
[y*(y+4x)]
No comments:
Post a Comment