A(-2,6) B (9,3)
We need to
find C on x-axis ==> C (x,0)
such that
:
AC = BC
AC= sqrt(0-6)^2 +
(x+2)^2]= sqrt[(36 + (x+2)^2]
BC= sqrt[(0-3)^2+ (x-9)^2]=
sqrt[(9 + (x-9)^2]
==> AC =
BC
==> sqrt(36+(x+2)^2]= sqrt[(9+
(x-9)^2]
square both
sides:
==> 36 + (x+2)^2 = 9 +
(x-9)^2
==> 36 + x^2 +4x + 4 = 9 + x^2 -18x +
81
Now group
similars:
==> 22x -50 =
0
==> x= 50/22=
25/11
Then the point C is (25/11,
0)
No comments:
Post a Comment