To integrate a function f(x) means to determine the
function F(x), which, when is differentiated, gives back the function
f(x).
We'll integrate f(x) =
y.
Int f(x)dx =Int (2x^3+3x+1)
dx/x^4
We'll apply the linear property of integrals and
we'll get:
Int (2x^3+3x+1) dx/x^4 = Int 2x^3dx/x^4 + Int
3xdx/x^4 + Int dx/x^4
We'll calculate each
Integral:
We'll start with Int
2x^3dx/x^4
We'll reduce like
terms:
Int 2x^3dx/x^4 = Int
2dx/x
Int 2dx/x = 2Int
dx/x
2Int dx/x = 2ln x +
C
Now, we'll calculate Int
3xdx/x^4.
Int 3xdx/x^4 = Int
3dx/x^3
Int 3dx/x^3 = 3Int
x^-3*dx
3Int x^-3*dx = 3*x^(-3+1)/(-3+1) +
C
3*x^(-3+1)/(-3+1) + C = -3/2x^2 +
C
Finally, we'll calculate Int
dx/x^4:
Int dx/x^4 = Int
x^-4*dx
Int x^-4*dx = x^(-4+1)/(-4+1) +
C
x^(-4+1)/(-4+1) + C = -1/3x^3 +
C
Now, the Integrals is:
Int
f(x)dx = 2ln x - 3/2x^2 - 1/3x^3 + C
Int
f(x)dx = ln x^2 - 3/2x^2 - 1/3x^3 + C
No comments:
Post a Comment