We'll take the function f(x) = cos
x.
Now, we'll consider the
ratio:
R(x) =
[f(x)-f(x0)]/(x-x0)
We'll substitute f(x) and f(x0) by the
expression of the function:
f(x) = cos
x
f(x0) = cos
x0.
[f(x)-f(x0)] = cos x - cos
x0
We'll transform the difference into a
product:
cos x - cos x0 = -2 sin [(x+x0)/2]*sin
[(x-x0)/2]
If we'll calculate the limit of the ratio R(x),
we'll get the value of the first derivative of the function, in the point x =
x0.
lim R(x) = lim -2 sin [(x+x0)/2]*sin
[(x-x0)/2]/(x-x0)
lim R(x) = -lim sin [(x+x0)/2]*lim sin
[(x-x0)/2]/(x-x0)/2
But lim sin a/a =
1
lim sin [(x-x0)/2]/(x-x0)/2 =
1
lim R(x) = -lim sin
[(x+x0)/2]*1
lim R(x) = -lim sin
[(x+x0)/2]
-lim sin [(x+x0)/2] = -sin (x0+x0)/2 = -sin
2x0/2 = -sin x0
But lim R(x) =
f'(x0)
f'(x0) = -sin x0, when f(x) = cos
x.
No comments:
Post a Comment