f(x) = (x-2)/(x^2+3). To find
f'(x).
Solution:
f(x) =
u(x)*v(x), f'(x) = u(x)v'(x) + u'(x)v(x)
Here u(x) = x-2
and v(x) = 1/(x^2+3)
u'(x) = (x-2) =1, v'(x) {1/(x^2+3)^2}
= -(1/(x^2+3))(x^2)' = -2x/(x^2+3), {u(v(x))' =
u'(x)*v'(x)
So f(x) = (x-2){-2x/(x^2+3)^2
+1/(x^2+3)
= {(x-2)(-2x)
+(x^2+3)}/(x^2+3)^2
={-2x^2+4x+x^2+3}/(x^2+3)
=
(-x^2+4x+3)/(x^2+3)^2
=-(x^2-4x-3)/(x^2+3)
No comments:
Post a Comment