Let us have the triangle
ABC.
Let D , E and F be the mid points of BC, CA and
AB.
Consider the triangle
ADB:
AB^2 = AD^2+ BD^2 - 2AD*DB cos ADB . Due to cosine
rule.
AB^2 = AD^2 +(BC/2)^2 - AD*BC* cos(ADB)....(1), as D
is mid point of BC.
Similarly if we conseder trangle ADC,
we get:
AC^2 =AD^2+(1/2 B/2)^2 -
AD*BC*cos(ADC)......(2)
(1)+(2):
AB^2+BC^2
= 2AD^2 + ((BC)^2)/2 - AD*BC{cosADB+cosADC).....(3).
But
the angles ADB and ADC are supplementary angles. So cosADB +cosADC = 0. Therefore eq (3)
becomes:
AB^2+AC^2 = 2AD^2 +(1/2)BC^2....
(4)
Similarly we can show by considering triangle BEC and
BED that
BC^2+BA^2 = 2BE^2
+(1/2)CA^2.........(5)
Similarly we can show
that
CA^2+AB^2 = 2CF^2
+(1/2)AB^2................(4)
(4)+(5)+(6):
2(AB^2+BC^2+CA^2)
=2(AD^2+BE^2+CF^2) +(1/2) {AB^2+BC^2+CA^2).
Subtract (1/2)
(AB^2+BC^2+CA^2) we get:
(3/2)(AB^2+BC^2+CA^2) =
2(AD^2+BE^2+CF^2).
Multiply by
2:
3(AB^2+BC^2+CA^2) =
4(AD^2+BE^2+CF^2)
No comments:
Post a Comment