We'll re-write the given constraint cosa = 1 - sina. We'll
add sin a both sides and we'll have:
sin a + cos a =
1
We'll square raise the new relation sina + cosa =
1.
(sina + cosa)^2 =
1^2
(sina)^2 + (cosa)^2 + 2sina*cosa = 1
(1)
But, from the fundamental formula of
trigonometry:
(sina)^2 + (cosa)^2 =
1
We'll substitute (sina)^2 + (cosa)^2 by
1:
The relation (1) will
become:
1 + 2sina*cosa =
1
We'll eliminate like
terms:
2sina*cosa =
0
But 2sina*cosa = sin
(2a)
We'll write the formula for tan
2a:
tan 2a = sin 2a/cos 2a
tan
2a = 0/cos 2a
tan 2a =
0
No comments:
Post a Comment