As per chain rule of
differentiation:
dy/dx =
(dy/du)(du/dv)(dv/dx)
Where:
y
= f(u)
u = f(v) and
v =
f(x)
To differentiate the given function using this rule we
proceed as follows.
Given:
y =
[5 + 16x - (4x)^2]^1/2
Let:
u
= 5 + 16x - (4x)^2
v =
4x
Then:
y = f(u) = u^1/2
and
u = f(v) = 5 + 4v -
v^2
dy/du = (1/2)u^(-1/2)
=
(1/2)(5 + 4v - v^2)^(-1/2)
= (1/2)[5 + 16x -
(4x)^2]^(-1/2)
= (1/2)[5 + 16x -
16x^2]^(-1/2)
du/dv = 4 - 2v
=
4 - 8x
dv/dx = 4
Then we
calculate derivative of given expression as:
dy/dx =
(dy/du)(du/dv)(dv/dx)
= {(1/2)[5 + 16x - (4x)^2]^(-1/2)}(4
- 8x)4
= 16(1 - 2x){(1/2)[5 + 16x -
(4x)^2]^(-1/2)}
= 16(1 - 2x){(1/2)[5 + 16x -
(4x)^2]^(-1/2)}
= 8(1 - 2x)(5 + 16x -
16x^2)^(-1/2)
No comments:
Post a Comment