We could calculate tan 15 = sin 15/ cos
15.
sin 15/ cos 15 = sin (45-30) / cos
(45-30)
We can calculate sin 15 = sin
(45-30)
= sin 45*cos 30 - sin 30*cos
45
sin 45 = sqrt2/2 = cos
45
sin 30 = 1/2
cos 30 =
sqrt3/2
sin (45-30) = sqrt6/4 - sqrt2/4 = sqrt2(sqrt3 -
1)/4
cos (45-30) = cos 45cos30 +
sin45sin30
cos (45-30) = sqrt6/4 +
sqrt2/4
cos (45-30) =
sqrt2(sqrt3+1)/4
tan 15 = [sqrt2(sqrt3 -
1)/4]*[4/sqrt2(sqrt3+1)]
tan 15 = (sqrt3 - 1)/(sqrt3 +
1)
tan 15 = (sqrt3 - 1)^2/(3 -
1)
tan 15 =
(4-2sqrt3)/2
tan 15 =
2-sqrt3
We'll calculate cos 105 = cos
(15+90)
cos (15+90) = cos15*cos90 -
sin15*sin90
cos 90 = 0
sin 90
= 1
sin 15 = sqrt2(sqrt3 -
1)/4
cos (15+90) = - sqrt2(sqrt3 -
1)/4
cos 105 = sqrt2(
1-sqrt3)/4
No comments:
Post a Comment