For the existence inverse function of f: A
-->B , the given relation between the sets must be a
bijection.
Therefore for any T1 a subset of B , f^-1(T1) =
A1 which is a subset of A.
So T1 = f(A1)
.............(1)
Similarly for any set T2 a subset of B
, f^-1(T2) = A2 which is a subset of A.
Therefore T2 =
f(A2).........(2)
Therefore from (1)and (2) we get the
diffrence of sets:
f(A1) - f(A2) = T1
-T2.
Therefore f^-1{f(A1) - f(A2} =
f^(-1)(T1-T2)
A1 -A2 =
f^-1(T1-T2).
f^-1(T1) - f^-1(T2) =
f^-1(T1-T2)
2)
Againg f^-1(T1)
= A1 . f^-1(T2) = A2, where A1 and A2 are subsets of
A.
f(A1) = T1
f(A2)
=T2.
So f(A1) U f(A2) = T1 U
T2.
f^-1{f(A1) U f^-1(A2) } = f^-1{T1 U
T2)
A1 U A2 = f^-1{T1 U T2
}
f^-1(T1) U f^-1(T2) = f^-1{T1 U
T2}
No comments:
Post a Comment