We establish or infer the truth of a proposition by the
truth tables.
~B is the negation of proposition
B.
When B is true (T), ~B is not true. When B is false( F)
, ~B is True (T).
Truth or inference table for
~B--> (G-->F) . Please do not get confusion for proposition in heading
and the false value, F in the ttruth table:
~B G F
(G-->F) ~B-->
(G-->F)
T T T
T T
T T F
F F
T F T
T T
T
F F T T
F T
T T T
F T
F F T
F F T
T T
Truth table for
(A->E)
A E
(A->E)
T T
T
T
F F
F T T
F F T
F F
T
Truth or inference table for B
v (A v G).
B A G (AVG)
BV((AVG)
T T T T
T
T T F T
T
T F T T
T
T
F F F T
F
T T T T
F
T F T
T
F F T T
T
F F F F F
The
truth table for (EVF) . There proposition F in the heading and in the truth infering
table the false value F. Please do not get confused about the different
F's.:
E F (E V
F)
T T T
T
F F
F
T T
F
F T
No comments:
Post a Comment