Saturday, August 10, 2013

Determine f(x) if f(3x+2) = 27x^3 + 30x + 9?

f(3x+2) = 27x^3+30x+9


To
determine
f(x).


Solution:


3x+2|27x^3+30x+9(9x^2
- 6x +14


         
27x^2+18x^2


------------------------------


           -18x^2+
30x


           -18x^2
-12x


 --------------------------


           
42x +9


           
42x+28


---------------------------


                 
-19
.............................R1.


Again
devide 9x^2-14x+14 by 3x+2.


3x+2|9x^2-6x+14( 3x
-4.


         9x^2+6x


------------------------


              
-12x+14


                
-12x-8


----------------------------


                        
22...........................R2


Again divide
the quotient by 3x-4 by 3x+2:


3x-2|3x-4( 1 =
Rsay.


         3x+2


---------------------


         
-6
--------------R3


Therefore


f(3x+2)
= Rt^3+R1*t^2+R2 * t+R1, where t =3x+2 and R1 ,R2,R3 are the successive
remainders.


So f(3x+2) = (3x+2)^2  -6(3x+2)^2 + 22(3x+2)
-19.

No comments:

Post a Comment

Comment on the setting and character of "The Fall of the House of Usher."How does setting act as a character?

Excellent observation, as it identifies how the settings of Poe's stories reflect the characters of their protagonists. Whet...