Wednesday, August 21, 2013

Prove the following trigonometric identities (a) sec^6A - tan^6A=1 + 3 tan^2 A * Sec^2 A (b) cos^4A - sin^4A = 2 cos^2 a - 1 (a) sec^6A -...

To prove


sec^6-tan^6A =
1+3tan^2A*sec^2A.



Put sec^2A = x and tan^2A = y.
Then sec^2A-tan^2A= 1 is also an identity. So x-y = 1. Using these, we
get:


(x^3-y^3) = (x-y)(x^2+xy+y^2) is
andentity.


sec^6A - tan^6A = 1*(sec^4A
+sec^2A*tan^2A+tan^4A) = {(1+tan^2)sec^2A + sec^2A*tan^2A+ }
=


(sec^2A+tan^2Asec^2A +sec^2Atan^2A+(sec^2A-1)tan^2A) =
(3sec^2Atan^2A +sec^A-tan^2A)


= 3tan^2Asec^2A+1, as
sec^A-tan^2A = 1.


Threrefore,  sec^6A -tan^6A =
1+3tan^2A*sec^2A.


b)


We use
a^2-b^2 = (a-b) (a+b) and  sin^x+ cos^2x = 1


LHS =
(cos^4A-sin^4A = (cos^2A-sin^2A)(cos^2A+sin^2A) ,


=
cos^2A-sin^2A


=cos^2A-(1-cos^2A)


=
cos^2A-1+cos^2A


= 2cos^2A-1 =
RHS.


c)


LHS =
sinA(1+tanA)+cosA(1+cotA)


= sinA+sin^2A/cosA + cosA
+cos^A/sinA


= sinA +(1-cos^2A)/cosA +cosA
+(1-sin^2A)/sinA


= sinA+1/cosA -cosA +cosA +1/sinA -
sinA


= 1/sinA +1/cosA


=
cosecA+secA =
RHS.


=


=

No comments:

Post a Comment

Comment on the setting and character of "The Fall of the House of Usher."How does setting act as a character?

Excellent observation, as it identifies how the settings of Poe's stories reflect the characters of their protagonists. Whet...