We'll put the formula of secant
method:
y = {[f(x1)-f(x0]/(x1-x0)}(x-x1) +
f(x1)
We'll note f(x) = e^x- 3x^2 for 0 ≤ x ≤1 and 3 ≤
x ≤5
x0 = 0
x1 =
3
f(x1) = f(3) = e^3-
3*3^2
f(3) = e^3 - 27
f(x0) =
f(0) = e0
f(0) = 1
We'll
substitute f(x1) and f(x0) in the formula:
y =
{[f(x1)-f(x0]/(x1-x0)}(x-x1) + f(x1)
y = (e^3 - 27 - 1)(x -
3)/(x - 0) + e^3- 27
y = (e^3 - 28)(x - 3)/x + e3 -
27
x = x1 - f(x1)(x1-x0)/[f(x1) -
f(x0)]
x = 3 - (e^3 -
27)*3/2
x = (6 - 59.049 +
81)/2
x =
13.9755
x3 = x2 - f(x2)(x2-x1)/[f(x2) -
f(x1)]
x2 = 5
f(5) = e^5-
3*25
f(5) = 68.4890
x3 = 5 -
68.4890*(5-3)/(68.4890 +7.317)
x3 = 5 +
136.978/75.806
x3 =
6.8069
No comments:
Post a Comment