The distance is ds =
v*dt.
We'll integrate both
sides:
Integral ds = Integral
v*dt
s = Integral v*dt
To
integrate the given function, we'll have to re-write the numerator of the function to
give odds to the resolution of the indefinite
integral.
We'll substitute the numerator1, by the
fundamental formula of trigonometry:
(sin t)^2 + (cos
t)^2 = 1
We'll re-write the
ratio:
1/(sin t)^2*(cos t)^2=[(sin t)^2 + (cos t)^2]/(sin
t)^2*(cos t)^2
1/(sin t)^2*(cos t)^2 = (sin t)^2/(sin
t)^2*(cos t)^2 + (cos t)^2/(sin t)^2*(cos t)^2
We'll
simplify the ratios:
1/(sin t)^2*(cos t)^2 = 1/(cos t)^2 +
1/(sin t)^2
We'll integrate both
sides:
Int dt/(sin t)^2*(cos t)^2 = Int dt/(cos t)^2 + Int
dt/(sin t)^2
Int dt/(sin t)^2*(cos t)^2 =
tan t - cot t + C
The
expression of the function of distance
is:
s(t) = tan t -
cot t
No comments:
Post a Comment