f(x) = sqrtx = x^(1/2)
g(x) =
3^sqrt(1-x).
To determine the domain and the functions: f
(g(x), and g(f(x) and
f((x).
Solution:
domain:
The
domain sqrt of x = x^(1/2) is x > = 0. The domain of sqrt(x-1) is x-1 >=
0. Or x > = 1. Both together the domain is x >
1.
f*g =f(g(x)
f*g = sqrt {
g(x)}
f*g = sqrt {
3^sqrt(x-1)
f*g = 3^ ((1/2)sqrt(x-1)), by index law sqrta =
a^(1/2).
f*g = 3
^[0.5sqrt(x-1)]
g*f =
g(f(x))
g*f =3^sqrt (f(x))
g*f
= 3^(sqrt(sqrtx))
g*f =
3^(sqrt(x^(1/2)))
g*f= 3 ^(x
^((1/2)*(1/2)))
g*f =
3^(x^0.25)
f*f =
f((f(x))
f*f = sqrt {
sqrtx}
f*f= sqrt(x^(1/2)
f*f=
x^((1/2)(1/2)) = x^0.25.
No comments:
Post a Comment