If f(x)=a*x^7 + b*x^3 + c*x – 7,
then
f(-x)= a*(-x)^7 + b*(-x)^3 + c*(-x)
–7
f(-x)=-a*x^7 - b*x^3 - c*x
–7
If we calculate the
sum
f(x)+ f(-x)= a*x^7 + b*x^3 + c*x – 7-a*x^7 - b*x^3 -
c*x –7
f(x)+ f(-x)=-14
From
the sum above, we’ve noticed that regardless the value of x, the sum will have always
the same value “-14”.
So the sum is not depending on x. The
conclusion would b that:
f(7)+
f(-7)=-14
But f(7)=7, the value being given in the
enunciation. So we’ll substitute it in the sum:
7+
f(-7)=-14
f(-7)=-14-7
f(-7)=-21
No comments:
Post a Comment