We'll re-write the product sin(a+b)*sin(a-b), using the
formulas for the sum and difference of the angles a and
b.
sin(a+b) = sina*cosb +
sinb*cosa
sin(a-b) = sina*cosb -
sinb*cosa
sin(a+b)*sin(a-b)=(sina*cosb +
sinb*cosa)(sina*cosb - sinb*cosa)
We notice that the
product is the difference of squares:
(sina*cosb +
sinb*cosa)(sina*cosb - sinb*cosa) = (sina*cosb)^2 -
(sinb*cosa)^2
We'll re-write the identity, substituting the
product:
(sinb)^2 + (sina*cosb)^2 - (sinb*cosa)^2 =
(sina)^2
We'll subtract (sina*cosb)^2 both
sides:
(sinb)^2- (sinb*cosa)^2 = (sina)^2 -
(sina*cosb)^2
We'll factorize by sin b to the left side and
we'll factorize by sin a, to the right side:
sin b(1 -
(cosa)^2) = sin a(1 - (cosb)^2)
sin b(sin a)^2 = sin a(sin
b)^2
We'll divide by sin b and sin a both
sides:
sina=sinb
No comments:
Post a Comment