Thursday, August 1, 2013

lim(tanx-1)/[(sinx)^2 - (cosx)^2] x->pi/4

First, we'll verify if it is a case of indeterminacy, so
we'll substitute x by pi/4, into the given
expression:


f(pi/4) = (tan pi/4-1)/[(sin pi/4)^2 - (cos
pi/4)^2]  , where tan pi/4= 1, cos pi/4  =sin pi/4 
=sqrt2/2


f(pi/4) = (1-1)/(1/2 -
1/2)


f(pi/4) = 0/0,  indeterminacy
case


We'll solve the limit, by substituting the
difference


tan x - 1 = (sin x / cos x) - 1 = (sin x - cos
x)/ cos x


lim(tanx-1)/[(sinx)^2 - (cosx)^2] = lim (sin x -
cos x)/ cos x* [(sinx)^2 - (cosx)^2]


We'll write the
difference of square from denominator as:


[(sinx)^2 -
(cosx)^2] = (sinx-cosx)(sinx+cosx)


lim (sin x-cos x)/ cos
x*[(sinx)^2-(cosx)^2]=lim (sin x-cos
x)/cosx*(sinx-cosx)(sinx+cosx)


We'll reduce like terms,(sin
x-cos x):


lim 1/cosx*(sinx+cosx) =1/cos pi/4*(sin pi/4 +
cos pi/4)


lim 1/cosx*(sinx+cosx) =
2/(sqrt2)(sqrt2)


lim 1/cosx*(sinx+cosx) =
2/2


lim 1/cosx*(sinx+cosx) =
1

No comments:

Post a Comment

Comment on the setting and character of "The Fall of the House of Usher."How does setting act as a character?

Excellent observation, as it identifies how the settings of Poe's stories reflect the characters of their protagonists. Whet...