x^4+y^4=257............(1)
x+y=5
x^4+y^4
=(x^2)^2+(y^2)^2
=(x^2+y^2)^2
- 2*x^2*y^2
={[(x+y)^2 - 2xy]^2 -
2*x^2*y^2}
={[(x+y)^2 - 2xy]^2 -
2(xy)^2}
=(25-2xy)^2 - 2(xy)^2 [ because
(x+y)=5 ]
put z=xy
so
x^4+y^4=(25-2z)^2 - 2z^2
257=(25-2z)^2 - 2z^2 [
because (x^4+y^4)=257
]
257=625-100z+4z^2- 2z^2
257=625-100z+2z^2
2z^2-100z+368=0
z^2-50z+184=0
z^2-4z-46z+184=0
z(z-4)-46(z-4)=0
(z-46)(z-4)=0
(z-46)=0
or (z-4)=0
z=46 or
z=4
so xy=46 or
xy=4
when xy=46
xy=4
(1)=> x=(5-y) (1)=>
x=(5-y)
(5-y)y=46
(5-y)y=4
y^2-5y+46=0
y^2-5y+4=0
Delta<0
y^2-y-4y+4=0
then
y(y-1)-4(y-1)=0
so
(y-4)(y-1)=0
. (y-4)=0 or
(y-1)=0
. y=4 or
y=1
so x=1 or
x=4
. Answer is
{x=1;y=4}
.
{y=1;x=4}
No comments:
Post a Comment