Friday, August 2, 2013

Solve the equations x^4+y^4=257, x+y=5.

x^4+y^4=257............(1)


x+y=5


x^4+y^4


=(x^2)^2+(y^2)^2


=(x^2+y^2)^2
- 2*x^2*y^2


={[(x+y)^2 - 2xy]^2 -
2*x^2*y^2}


={[(x+y)^2 - 2xy]^2 -
2(xy)^2}


=(25-2xy)^2 - 2(xy)^2                [ because
(x+y)=5 ]


put z=xy


so        
 x^4+y^4=(25-2z)^2 - 2z^2


257=(25-2z)^2 - 2z^2         [
because (x^4+y^4)=257
]


257=625-100z+4z^2- 2z^2


257=625-100z+2z^2


2z^2-100z+368=0


z^2-50z+184=0


z^2-4z-46z+184=0


z(z-4)-46(z-4)=0


(z-46)(z-4)=0


(z-46)=0
        or            (z-4)=0


z=46               or        
        z=4


so   xy=46       or              
 xy=4



when xy=46                          
 xy=4


(1)=> x=(5-y)                  (1)=>
x=(5-y)


(5-y)y=46                          
(5-y)y=4


y^2-5y+46=0              
y^2-5y+4=0


Delta<0                    
y^2-y-4y+4=0


then                        
y(y-1)-4(y-1)=0


so                                
(y-4)(y-1)=0


.                             (y-4)=0    or  
  (y-1)=0


.                                   y=4    or    
     y=1


so                                x=1    or      
   x=4


.                   Answer is  
{x=1;y=4}


.                                    
{y=1;x=4}

No comments:

Post a Comment

Comment on the setting and character of &quot;The Fall of the House of Usher.&quot;How does setting act as a character?

Excellent observation, as it identifies how the settings of Poe's stories reflect the characters of their protagonists. Whet...