Thursday, December 26, 2013

prove the following identity- cosA/(1-tanA)+sinA/(1-cotA)=cosA+sinA

For the beginning, we'll re-write the terms from the left
side of the given expression:


cosA/(1-tanA) = cosA/(1-
sinA/cosA)


cosA/(1- sinA/cosA) =
cosA/[(cosA-sinA)/cosA]


cosA/[(cosA-sinA)/cosA] =
(cosA)^2/(cosA-sinA) (1)


sinA/(1-cotA) = sinA/(1-
cosA/sinA)


sinA/(1- cosA/sinA) = (sinA)^2/(sinA-cosA)
(2)


We'll add (1) and
(2):


(cosA)^2/(cosA-sinA) + (sinA)^2/(sinA-cosA) =
(cosA)^2/(cosA-sinA) -
(sinA)^2/(cosA-sinA)


(cosA)^2/(cosA-sinA) -
(sinA)^2/(cosA-sinA) =
[(cosA)^2-(sinA)^2]/(cosA-sinA)


We'll re-write the
difference of squares:


(cosA)^2-(sinA)^2 = (cos A -
sinA)(cos A + sinA)


The left side of the expression will
become:


(cos A - sinA)(cos A +
sinA)/(cosA-sinA)


We'll reduce the like
terms:


(cos A - sinA)(cos A +
sinA)/(cosA-sinA) = cos A + sinA q.e.d.

No comments:

Post a Comment

Comment on the setting and character of "The Fall of the House of Usher."How does setting act as a character?

Excellent observation, as it identifies how the settings of Poe's stories reflect the characters of their protagonists. Whet...