For the beginning, we'll re-write the terms from the left
side of the given expression:
cosA/(1-tanA) = cosA/(1-
sinA/cosA)
cosA/(1- sinA/cosA) =
cosA/[(cosA-sinA)/cosA]
cosA/[(cosA-sinA)/cosA] =
(cosA)^2/(cosA-sinA) (1)
sinA/(1-cotA) = sinA/(1-
cosA/sinA)
sinA/(1- cosA/sinA) = (sinA)^2/(sinA-cosA)
(2)
We'll add (1) and
(2):
(cosA)^2/(cosA-sinA) + (sinA)^2/(sinA-cosA) =
(cosA)^2/(cosA-sinA) -
(sinA)^2/(cosA-sinA)
(cosA)^2/(cosA-sinA) -
(sinA)^2/(cosA-sinA) =
[(cosA)^2-(sinA)^2]/(cosA-sinA)
We'll re-write the
difference of squares:
(cosA)^2-(sinA)^2 = (cos A -
sinA)(cos A + sinA)
The left side of the expression will
become:
(cos A - sinA)(cos A +
sinA)/(cosA-sinA)
We'll reduce the like
terms:
(cos A - sinA)(cos A +
sinA)/(cosA-sinA) = cos A + sinA q.e.d.
No comments:
Post a Comment