The variance of any given set of data containing n values
can be calculated as:
V = [(x1 - x)^2 + (x2 - x)^2 + (x3 -
x)^2 + ... (xn -
x)^2]/n
Where:
x, x2, x3 ...
xn represent the n values, and
x = mean of n values = (x1
+ x2 + x3 + ... +xn)/n
From the given values we calculate
the mean x as:
x = (4 + 11 + 11 + 2 + 8)/5 = 36/5 =
7.2
And
(x1 - x)^2 = (4 -
7.2)^2 = 10.24
(x2 - x)^2 = (11 - 7.2)^2 =
14.44
(x3 - x)^2 = (11 - 7.2)^2 =
14.44
(x4 - x)^2 = (2 - 7.2)^2 =
27.04
(x5 - x)^2 = (8 - 7.2)^2 =
0.64
And
V = [(x1 - x)^2 + (x2
- x)^2 + (x3 - x)^2 + (x4 - x)^2 + (x5 - x)^2]/5
= 10.24 +
14.44 +143.44 + 27.04 + 0.64)/5
=
66.8
= 13.36
Rounding this off
to 1 decimal place we get
13.4
Answer:
Variance =
13.4
No comments:
Post a Comment