To differentiate y with respect to
x
(1) y = 2^-x*cosx (2) y = tan
(x^2-x).
Solution:
(1)
y
= 2^(-x) * cos2x.
We know that y' = (u*v)'x = u'(x)*v(x)
+u(x)*v'(x).
u(x) = 2^-x. u'(x) = 2^(-x)*
ln2.
v(x) = cos(2). v'(x) = -(sin2x)*(2x)' =
-2sin2x
Therefore ,
y' =
{(2^-x)*cos2x}' = (2^-x)'*cos2x + (2^-x)(cos2x)'
=
(2^-x)(ln2) cos2x+ 2^-x * (-2sin2x)
y' = 2^-x{ ln2 * cos2x
-2sin2x}
(2)
y = tan
{sqrt(x^2-2)}
We know that if y = u (v(x) , then y' =
{u'(v(x)}*v'(x)
So
(x^2-2}' =
2x
{sqrt(x^2-2)}' = {(x^2-2)^(1/2)
}'
= (1/2) (x^2-2)^(1/2 -1 ) *
(x^2-2)'
= (1/2) (x^2-2)^(-1/2) *
2x
= -x/(x^2-2)^(1/2).
tan
(sqrt(x^2-2) = {sec^2 [sqrt(x^2-2)] } {sqrt(x^2-2)}'
=
{[sec(sqrt(x^2-2))]^2} {-x/(x^2-2)^(1/2)}
tan {sqrt(x^2-2)}
= {-x/(x^2-2)} { [ sec (sqrt(x^2-2))]^2}
No comments:
Post a Comment