We'll apply the sine function to the sum and the
difference of angles 45 and x:
sin (a-b) = sin a*cos b -
sin b*cos a
sin (a+b) = sin a*cos b + sin b*cos
a
We'll put a = 45 and b =
x.
sin (45+x) = sin 45*cos x + sin x*cos
45
sin (45+x) = sqrt2*cos x/2 + sqrt2*sin x/2
(1)
sin (45-x) = sin 45*cos x - sin x*cos
45
sin (45-x) = sqrt2*cos x/2 - sqrt2*sin x/2
(2)
Now, we'll substitute (1) and (2) in the given
identity:
sin(45+x) + sin(45-x) =
sqrt2*cosx
sqrt2*cos x/2 + sqrt2*sin x/2 + sqrt2*cos x/2 -
sqrt2*sin x/2 = sqrt2*cosx
We'll combine and eliminate like
terms:
2*sqrt2*cos x/2 =
sqrt2*cosx
We'll simplify and we'll
get:
sqrt2*cosx =
sqrt2*cosx
The identity sin(45+x) + sin(45-x)
= sqrt2*cosx is true.
No comments:
Post a Comment